Junior Varsity Proof

Solutions

1. Show that at a gathering of any six people, some three of them are either mutual acquaintances or are complete extrangers to each other.

Solution: Without loss of generality, assume this people are Alice, Brenda, Charles, David, Ellen and Frank, or A, B, C, D, E and F as a shortcut. From A’s standpoint, she either is an acquaintance with at least three people, or is a totally extranger with at least three people. Suppose then, without loss of generality that A is acquaintance with B, C and D. Now, if among B, C and D, they are all complete extrangers to each other, then the statement is true. If not, then suppose that B and C are mutual acquaintances (symetrically any other pair), then A, B and C are mutual acquaintances, and hence, the statement is true.

2. A regular tetrahedron and a regular octahedron have equal edges. Find the ratio of their volumes.

Solution: Let ℓ be the length of the edges. A tetrahedron is a pyramid with triangular base, and a octahedron can be seen as two pyramid with square basis glued together by the base. Consider the vertices of the tetrahedron as X, Y, Z and W, and let V be the the foot of the height of the tetrahedron over XYZ. Now, let A, B, C, D, E, F be the vertices of the octahedron, where $ABCD$ is the square basis. Let G be the foot of the heigt over the square base.

The volume of all piramida figure with straight edges is the area of the base times the height divided by 3. Let h_1 be the height of the tetrahedron and h_2 the height of the pyramid $ABCDE$. By symetry XV bisects the angle $\angle XYZ$, YV bisects $\angle XYZ$, hence V is the circumcenter of $\triangle XYZ$, and therefore $XV = \frac{\sqrt{3}}{3} \ell$, and by the Pythagorean theorem one have that $h_1 = \frac{\sqrt{6}}{3} \ell$. Now, AG is half of the diagonal of $ABCD$, hence $AG = \frac{\sqrt{2}}{2} \ell$ and hence $h_2 = \frac{\sqrt{2}}{2} \ell$. Let \triangle be the area of XYZ, and
the area of $ABCD$. If Λ_1 is the volume of the tetrahedron and Λ_2 be the volume of the octahedron, then,

$$\Lambda_1 = \frac{h_1 \triangle}{3} = \frac{\left(\frac{\sqrt{6}}{3} \ell \right) \left(\frac{\sqrt{3}}{4} \ell^2 \right)}{3} = \frac{\sqrt{2}}{12} \ell^3$$

$$\Lambda_2 = 2 \frac{h_2 \Box}{3} = \frac{2 \left(\frac{\sqrt{2}}{2} \ell \right) \ell^2}{3} = \frac{\sqrt{2}}{3} \ell^3$$

Thus

$$\frac{\Lambda_1}{\Lambda_2} = \frac{1}{4}.$$
4. Solve \[
\begin{align*}
&\begin{cases}
 a^3 - b^3 - c^3 = 3abc \\
 a^2 = 2(b + c)
\end{cases}
\end{align*}
\] simultaneously in the positive integers.

Solution: We will first work the first equation. Note that
\[
3abc = a^3 - b^3 - c^3 = a^3 - (b + c)(b^2 - bc + c^2) = a^3 - (b + c)[(b + c)^2 - 3bc] = [a^3 - (b + c)^3] + 3bc(b + c) = [a - (b + c)][a^2 + a(b + c) + (b + c)^2] + 3bc(b + c)
\]

therefore
\[
0 = [a - (b + c)][a^2 + a(b + c) + (b + c)^2] + 3bc(b + c) - 3abc = [a - (b + c)][a^2 + a(b + c) + (b + c)^2] - 3bc[a - (b + c)] = [a - (b + c)][a^2 + a(b + c) + (b + c)^2 - 3bc] = [a - (b + c)][a^2 + a(b + c) + (b - c)^2 + bc]
\]

Note that the second member of the multiplication is the addition of strictly positive numbers, hence the second bracket is different from zero, and thus,
\[
a - (b + c) = 0 \Rightarrow a = b + c = \frac{a^2}{2} \Rightarrow a = 2 \Rightarrow b = c = 1
\]

What is the only solution.

5. Prove that if \(a, b, c\) are real numbers such that \(a + b + c = 0\), then
\[
3abc = a^3 + b^3 + c^3.
\]
Solution

Note that as $a + b + c = 0$ then we have that

$$
0 = (a + b + c)^3
= a^3 + b^3 + c^3 + 3ab^2 + 3ac^2 + 3ba^2 + 3bc^2 + 3ca^2 + 6abc
= (a^3 + b^3 + c^3) - 3abc + 3(ab^2 + ba^2 + abc)
+ 3(cb^2 + bc^2 + abc) + 3(ac^2 + ca^2 + abc)
= (a^3 + b^3 + c^3) - 3abc + 3ab(a + b + c)
+ 3cb(a + b + c) + 3ac(a + b + c)
= (a^3 + b^3 + c^3) - 3abc
$$

From where evidently $3abc = a^3 + b^3 + c^3$